Practical Google App Engine
Applications in Python

FE#MLE (ericsk)
COSCUP 2009

http://tinyurl.com/coscup-appengine

http://tinyurl.com/coscup-appengine

Outline

e Effective Datastore API

e Data Manipulation Efficiency
e Effective Memcache

e Zip Import & Zip Serve

e Conclusion

Quota Limit on App Engine

‘Requests/Secondﬂ all 24 hr 12hr 6hr

12.50

10.00

-24hr -18hr 12hr -6hr now

Billing Status: Free - Settings Quotas reset every 24 hours. Next reset: 1 hrs &)

& Your application is exceeding a quota: CPU Time ©)]
& Your application is exceeding a quota: Datastore CPU Time ©,

Resource Usage

CPU Time I 100% 46.30 of 46.30 CPU hours
Outgoing Bandwidth i 2% 0.20 of 10.00 GBytes
Incoming Bandwidth | 3% 0.32 of 10.00 GBytes
Stored Data 1 54% 2.69 of 5.00 GBytes
Recipients Emailed 0% 0 of 2000

from: http://www.flickr.com/photos/kevin814/3587610731/

http://www.flickr.com/photos/kevin814/3587610731/

What's Datastore

e Datastore is a kind of key-value database built on GFS.

o scalable

o Kind-based data entities. (not table-based)

o add/remove properties dynamically

Employees
ID

Name Email Salary
1 Eric eric@example.com
2 Kevin kevin@example.com
3 Peter peter@example.com
4 Mary mary@example.com

1000
2000
4000

5000 |

Relational DB Table

Datastore

dddddd
CCCCCC
Ccccce
dddddd

Kind

Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee
Employee

Property
Name
Email
Name
Salary
Email
Salary
Name
Email
Name
Salary

Datastore

Value
Eric
eric@example.com
Kevin

1000
kevin@example.com

2000
Mary
peter@example.com
Peter

5000

Avoid Heavily-Indexing

e Datastore will create index on each property.
o If there're many properties in your data, indexing will
downgrade performance.
o If a property is not used for filtering nor ordering, add
iIndexed=False to the data model declaration.

class Foo(db.Model) :

name = db.StringProperty (required=True)
bar = db.StringProperty (indexed=False)

Minimize Datastore API Calls

e CRUD data entities by keys:
o Ineffective Way:
keys = [keyl, key2, key3, ..., keyN]

[]
for key in keys:

products
products.append (db.get (key))

O I.E.ﬁ;ective Way:

keys = [keyl, key2, key3, ..., keyN]
products = db.get (keys)

o Same as db.put (), db.delete().

Re-bind GqlQuery Object

e Use prepared GglQuery data:
o Ineffective way:
conds = [['abc', 'def'], ['123', '456'], ...]

for cond in conds:
query = db.GglQuery ('SELECT * FROM Foo WHERE first =

first, second = :second', first=cond[0], second=cond[1l])

o Effective way:

conds = [['abc', 'def'], ['123', '"456'], ...]
prepared query = db.GqglQuery ('SELECT * FROM Foo WHERE first
= :first, second = :second')

for cond in conds:
query = prepared query.bind(first=cond[0], second=cond

[1])

Avoid Disjunctions

e IN or !'= operator generates more queries.

o0 SELECT * FROM Foo WHERE a IN ('x', 'y') and b !'= 3
splits into 4 queries
m SELECT * FROM Foo WHERE a == 'x'
m SELECT * FROM Foo WHERE a == 'y'

m SELECT * FROM Foo WHERE b < 3
m SELECT * FROM Foo WHERE b > 3

e Fetches all data and filters them manually.

How to Fetch More Than 1000 Results

e Datastore API fetches no more than 1000 results once a call
e Fetches more than 1000 results (SLOW, may cause TLE)

data = Foo.gql ('ORDER BY key ') .fetch(1000)
last key = data[-1].key()
results = data

while len(data) == 1000:
data = Foo.gql ('WHERE key > :1 ORDER BY key '

last key) .fetch(1000)

last key = data[-1].key()
results.extend (data)

Put Data into Entity Group

(C;%KOW*
5145]lo

——

W WIMEHAE (entity group)

Put Data into Entity Group (cont.)

e Put data into an entity group:

forum = Forum.get by key name ('HotForum')
topic = Topic (key name='Topicl',...... , parent=forum) .put ()
e Load data from an entity group:

topic = Topic.get by key name('Topicl',
parent=db.Key.from path('Forum', 'HotForum'))

Sharding Data

e \Write data in parallel
o avoiding write contention
e Sharding data with key _name:
class Counter (db.Model) :
name = db.StringProperty ()
count = db.IntegerProperty ()

def incr counter (counter name) :

shard = random.randint (0, NUM SHARDS - 1)

counter = Counter.get or insert(shard, name=counter name)
counter.count += 1

counter.put ()

Effective Caching

e Caching page content
o Without caching

self.response.out.write (
template.render ('index.html', {})

)

o With Caching

page content = memcache.get ('index page content')
1f page content 1is None:
page content = template.render ('index.html', {})

self.response.out.write (page content)

Effective Caching (cont.)

e Caching frequently fetched entities
o Without caching

products = Product.gqgl ('"WHERE price < 100").fetch (1000)
from django.utils import simplejson

self.response.out.write(simplejson.dumps (products))

o With caching

products = memcache.get ('products 1t 100")
1f products is None:
products = Product.ggql ('"WHERE price < 100").fetch (1000)

from django.utils import simplejson
self.response.out.write(simplejson.dumps (products))

Zipimport & ZipServe

e Ziplmport:
Zip your library and then import modules within it.
e ZipServe:
Zip your static/asset files, then serve them with zipserve.

o WHY?
You can ONLY put 1000 files in your application.

Zipimport

e For example, you want to use Google Data client library in
your application.
o You have to put gdata/ and atom/ packages into your
application directory.
o With zipimport, you can zip them:
application/

app.yaml

atom.zip
gdata.zip

http://code.google.com/p/gdata-python-client/

Zipimport (cont.)

o import gdata modules in your script:
import sys

sys.path.append('atom.zip')
sys.path.append('gdata.zip')

from gdata.doc import service

Zipserve

e For example, you want to use TinyMCE library

o You have to put TinyMCE library into your directory. However, it
contains lots of files.

o With zipserve, you can zip the library, and configure the app.
yaml:

- url: /tinymce/.*
script: S$PYTHON LIB/google/appengine/ext/zipserve

o The filename MUST be the same as the directory name. In this

sample, the TinyMCE library should be zipped into tinymce.
zip.

http://tinymce.moxiecode.com/

Conclusion - How to Write Better
GAE Apps?

e Read the Articles on Google App Engine site.

e Trace the source from SDK
o Maybe you will find the undocumented API.

e Read http://practicalappengine.blogspot.com/ (in Traditional
Chinese)
e Develop apps!

http://practicalappengine.blogspot.com/

http://taipei-gtug.org/

